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I N V A R I A N T  I N T E G R A L S  I N  T H E  L E O N O V - P A N A S Y U K - D U G D A L E  

M O D E L  OF A C R A C K  

S. A. Nazarov UDC 539.375 

In this paper, we calculate some ordinary invariant integrals and higher-order integrals that  contain 
derivatives of displacement and stress fields. The arc of integration ends on the crack sides and encloses the 
crack tip together with the tip zone. Values of the integrals are used to determine the parameters of the 
end zone u its length and the intensity of cohesion forces u (the classical integrals J1 = J and Jr = M 
are related only to energy characteristics). An approach to the calculation of invariant integrals using their 
common properties and eliminating cumbersome manipulations is described. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Let f~ be a plane isotropic body with cracks whose sides are 
included in the boundary 0~. We fix a straight crack M and relate it to Cartesian coordinates so that 

M = { x : x 2 = 0 ,  xl E ( - a , 0 ) } .  (1.1) 

Assume that E is a vicinity of the point x = 0, F is a simple contour that  connects the sides M + and M -  of 
the crack (1.I) inside 2 \ M ,  and mass forces are absent in 2. The crack sides are free of stresses. According 
to the Leonov-Panasyuk-Dugdale model [1, 2], in the mouth M! = {x E M : xl ) - l }  act cohesion forces 
with intensity q, and MI C 2. In other words, the displacement vector u = (ul, u2) satisfies the relations 

L ( V ) u ( z )  - p V .  Vu(x) + (A + p ) V V . u ( x )  = O, z e E \ M ;  (1.2) 

a12 (u ;x )=0 ,  z E M  +N--;  (1.3) 

a22 (u ;x )=0 ,  x E M  •  xl < - l ;  (1.4) 

o'22(u; x) = q, x e M • f3 .=., xl > - l .  (1.5) 

Here V = grad, the dot denote scalar products (i.e., V-  V = A is the Laplacian and XT. = div), A and # are 
the Lam~. coefficients, and aij(u) are Cartesian components of the stress tensor or(u): 

~ #~ '~xj  + O x i ] + $ 6 i ' J k ~ x l  + Ox2] i , j  = 1, 2. (1.6) 

As usual, the length l > 0 of the zone of action of the cohesion force is set (automatically, according 
to the postulates of the adopted model) such that the stresses (1.6) remain limited up to the crack tip, i.e., 
the stress intensity coefficients vanish. The mouth of the crack is small (l << a), and we further assume that 
the ends of the arc F do not belong to Mr. 

The goal of this paper is to determine all possible characteristics of the mouth of the crack from values 
of various invariant integrals calculated on the contour F away from the apex O by solving problem (1.2)-(1.5). 

2. F i r s t - O r d e r  I n v a r i a n t  In tegra l s .  Cherepanov [3] and Rice [4] proposed the path-independent 
integral 

Ou (z" 
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where ds is an element of the arc length, n = (nl,n2) is the unit normal vector (external with respect to 
the region bounded by F/, nl = cos (n, Xl) is its directing cosine, a(~) is the vector of normal stresses with 
components ~r! '~) = nlo'li + n2a2i, W(u) is the density of the elastic-energy integral, W(u; x) = W(u, u; z), 
and 

w(~, o;x) -- ~ 2(~ + ~) ~.(u; ~) ~j;(v; ~)]. (2.2) 
i,j=l 

Knowles and Sternberg [5] and Budiansky and Rice [6] proposed another invariant integral: 

Jr(u; F ) =  f {W(u;x)x" n ( x ) - ( z ,  ~ x  (x) + x2 ~ - ~ x 2 0 u  Ou (x)) .  ~r(n)(u; x)}ds. (2.3) 
F 

It is known that [with satisfaction of Eq. (1.2) and the boundary conditions (1.3) and (1.4) near P], integrals 
(2.1) and (2.3) coincide, respectively, with the integrals 

'.(u, ~I = .'-/{-~-) ~ ou 
t-)- .(.)(~; .)} d.; (2.4) 

F 
1 

s.(~; r )=  -~ i {u(x) .a(n)(Du;x) - Du(x) . a(')(u;x)} ds. (2.5) 
F 

In (2.5), D is a scalar differential operator: 

0 0 
D = z .  V = xl ~ + x20x2" (2.6) 

Note that, under the above conditions, the invariance of integrals (2.4) and (2.5) is beyond question: it suffices 
to recall the Betti identity (the Green formula) and note that, by virtue of (1.2)-(1.4), 

Ou ( Ou ) (M+\M~)nZ,  L ( V ) ~ = 0  on - \M,  ai2 ~ =0 on 

L(V)Du = (D + 2) L(V)u on Z\M, (2.7) 

( o )  
o'i2(Du)=(D+l)cri2(u)= xi~-~xi+l ai2(u)on (M+\Mp) N - ,  i = 1 , 2 .  

For integrals (2.1) and (2.4), the above-mentioned fact is verified, for example, in [7] and [8, w 7.3]. Not 
having an exact reference, we establish here the coincidence of integrals (2.2) and (2.5). We assume that X is 
a cutting function that is smooth in E\M,  equal to unity near F, and vanishes where relations (1.2)-(1.4) are 
violated. H is a region located inside F and bounded by the arc F, another similar arc F ~ (on it, X = 0), and 
by segments m + of the sides M +. We set m = m + U m- .  Integrating more than once by parts, we obtain 

2St(u; F) = 2Ir(xu; F) = / { X u "  LD(xu) - D(xu)" n(xu)}dx 
II 

dz 
m II 

0 0 

m 

0 
= --2__i O(XU)" i (xu)dx "l- 2 i Xl~x 1 (Xu)" (:r(n)(Xu)dX'l 

II in 

~f~(_ ~(.), ~u).. - .i.~. ~ + ')~(-, ~u)..- .I.~. ~ 
II P 17 r 
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= 2 / ( x . n )  W(u ,u)dx-  2/Du.a(n)(u)ds = 2J,(u; F). (2.8) 
F r 

In these transformations, we took into account equalities (2.7) and the fact that L(XU) = 0 on F U Ft and 
a(n)(XU) = 0 at the ends of the segments m :1:. In addition, on m, we use the relation x .  n = 0, which implies 
that, with "transfer" of D, no integrals occur on the sides M • 

We calculate integrals (2.1) and (2.4). We close the arc F by the segments 7 + and 7 -  of the crack sides 
which end at the tip x -- 0. Since, at the tip, stresses do not have singularities, by virtue of the invariance of 
the integrals, we have 

1 f ( \ au 
J l (u ;F) - -  

"}'+U*l'- 

With closure of the arc F, we assume that on the new portion of the contour, the direction of the normal is 
inherited. Therefore, after the second sign, the minus sign appears in equality (2.9). We use this convention 
throughout the paper. 

It appears at first glance that, by virtue of (1.3)-(1.5), the minuend in braces in (2.9) vanishes, and 
the right side of (2.9) coincides with the relation 

1" i ou2 2[u2(-I, +01 (-l,-0)l. ~ ~ + -~x1(x,, rl:O) q dx: = - u2 

But this is faulty, because, due to the jump of the function xl ~ O'22(OU/OXl; Xl ,  ::{::0) at the point x: = - l ,  
the quantity a22(Ou/Ox1; x:, =t=0) includes the generalized function q6(xl + l), which is proportional to the 
Dirac ~-function. As a result, taking into account the omitted singular term, we find 

S,(u; F) = I,(u; F) = q[u2(-l, +0) - u2(- / ,  -0)]. (2.10) 

From the same reasoning and by virtue of equalities (2.7), we obtain the following chain of relations 
for integrals (2.3) and (2.5): 

1 J,(u; r) = i,(u; r) = = - :  f {u(=). (o + Du(x) .a(n) (u ;x ) }ds  
"y+U'y- 

- l  

- !  

A rigorous proof of formulas (2.10) and (2.11) using analysis of the displacement fields near the points 
Q:t: = (_l,  4-0) is given in Sec. 3. 

The quantity (2.10) coincides with the energy-release rate s under displacement of the mouth edge due 
to crack extension or decrease in load (see, for example, [9]). The sum of the latter integrals for xl E ( - l ,  O) 
from (2.11) is the work A(u) of cohesion forces on displacements u. This corresponds to the general concept of 
invariant integrals (see [3-6] etc.; probably, formulas (2.10) and (2.11) are known, but we do not know exact 
references). However, apart from A(u), (2.11) includes the term - l s  [cf. with (2.10)], which can be interpreted 
as the energy expended on the formation of the mouth. Thus, 

A(u) = J,(u; F) + IJ,(u; F). (2.12) 

Equality (2.12) indicates the necessity of calculating the parameter 1. 
3. A s y m p t o t i c  R e p r e s e n t a t i o n s  of D i sp l acemen t s  N e a r  Q+. In Sec. 2, we handled somewhat 

freely the generalized functions concentrated in Q+. To perform more rigorous manipulations, we first elucidate 
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M 

Fig. 1 

the asymptot ic  behavior of the solution u near Q• replace integration along the segments 7 + by integration 
along the arcs -),~ shown in Fig. 1, and then find the limit as 6 ---* +0 [in this section, the circle with the 
center 0 is not used; see further the comment  on (5.5)]. 

Let y = (yl, y2) and (p, 0) be Cartesian and polar coordinates with the center Q+, 

yl = x 1 +  l = pcosO, y2 = x2 = psinO. (3.1) 

We consider a displacement field w with the components 

w , ( y )  = (4g~r)-'q{(1 - ze)y,O - (1 + ~e)y 2 lnp  - y2 - 2wyl}, 

w2(y) = (4#a')- 'q{(1 - re)y20 + (1 + ee)y, lnp  - yl + 2ry2} (3.2) 

(2=  3 = + + .)-',  = a[2(  +.)1-'). 

Direct calculations show that 

cr12(w; y,,  -{-O ) ----0, Yl e (--oo,+oo);  (722(w;yl,.{_O) ---- { O, Yl E (--cx),O), q, y, E (0,+r162 (3.3) 

Therefore, by means of the field w from (3.2), one can compensate the jump on the right side of boundary 
conditions (1.4) and (1.5), and the difference R = u - w becomes smooth near Q+ and can be expanded in a 
Taylor series: 

R ( y )  = u (x )  - w (y )  = R~  + R ' ( y )  + R2(y) + O(p3), p --+ 0. (3.4) 

Here R k is a vector polynomial  tha t  satisfies the homogeneous Lam~ system and the conditions qi2 ( R k ; y l ,  O) = 
0, i = 1 and 2. Furthermore,  

0 1 w , ( y )  = (4#Tr)-lq{(1 -- ~e)O- 2ylY2P -2 - 2~r}, (3.5) 

Oiw2(y)  = (4ktTr)-lq{(1 + ze) lnp  - 2y2p -2 + a~}. 

Thus, the field 01w differs from the classical solution of the problem of loading of a half plane by a normal 
concentrated force only by rigid translation (see, for example, [10, w 10.9]). 

We now consider the integral along a semicircle with radius 5, obtained under integration along 7+: 
~r 

0 

o'!P)(X)=ai,(X)cosO+ai:(X)sinO, i =  1,2. (3.7) 

Let X = 01w and Y -- e 1 or Y = e 2, where e i is the unit  vector of the xi axis. Subst i tut ing the stresses 
calculated according to (1.6), (3.7), and (3.5) into (3.6), we find 

A(O,w,  e 2) = q, A(O,w,  e') = 0. (3.8) 

Equalities (3.8) support  the fact noted after (3.5). 
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All manipulations are true for the point Q- .  Therefore, using the invariance of (2.1) and (2.4), we 
integrate along 7fi (note the necessity of following the direction of the normal) and then 5 let tend to zero. 
As a result, we obtain equalities (2.10). The same reasoning was used in the formal transformations (2.11) 
(see also See. 4, which describes methods used to facilitate calculations). 

4. Refining the A s y m p t o t i c  Fo rmulas .  In =, using the displacement field u, we construct two 
elastic fields: 

Ou Du( ) (4.1) 

By virtue of (1.2)-(1.5) and (2.7), U and V satisfy the homogeneous system (1.2), and the stresses ai2(U) 
and ai2(V) are eliminated on M :1: everywhere except maybe at the points Q+. As previously, we restrict our 
consideration to the upper side M • The asymptotic representation for U follows immediately from (3.4): 

U(x) = Olw(y) + O1RI(y) + O~R2(y) + o & ) ,  p --~ O. (4.2) 

Tc write a similar formula for V, we transform to the coordinates (3.1) in (2.6) and obtain 

D = x.  Vx = -I01 + y.  Vy = -I#1 + D (0. (4.3) 

Clearly, D(t)Rk = kRk. In addition, from (3.2) we derive 

D(t)w(y) = w(y) + w(y), w(y) = Nq(yle 2 -- y2el), N = (1 + ~e)/(4~rp). (4.4) 

Thus, by virtue of (4.1), (4.3), and (4.4), we have 

V(x) = -IOlw(y) + T~ + TI(y) + O(p2), p --* 0, 

T~ = -IOlnl(y) ,  Tl(y) = -IO1R2(y) + w(y), (4.5) 

where T (k) is a vector polynomial of the power k. 
Formulas similar to (4.2), (4.4), and (4.5) can also be written for x2 < 0, but the polynomials R k and 

T t' will, generally speaking, be different. To avoid cumbersome notation, we do not supply R k, T k, and w 
with the subscripts 4- that  distinguish the crack sides. Instead, we write Rk(xl, 4-0) to distinguish traces of 
the polynomials on M + (in other words, R k and T k denote piecewise-polynomial vector functions). 

We calculate the integrals JI(U; F), JI(V; F), etc., which, according to [11], will be called higher-order 
invariant integrals (they include derivatives of the field u). To simplify manipulations, we note some properties 
of the form A from (3.6); it is assumed that everywhere X and Y are solutions of the homogeneous problem 
in the half-space (w is not such, but 01w and R k and T k fit). First, the form A is antisymmetric,  !.e., 

A ( X , Y )  = - A ( Y , X ) .  (4.6) 

Second, by virtue of the Betti formula, relation (3.6) does not depend on p. Third, if X(y) = pr~(o, In p) and 
Y(y) = p~'~t(O, lnp) (the dependence on 0 is smooth, the dependence on lnp is polynomial, and T, ~e 6 R), 
then A(X, Y) is different from zero only if v + a~ = - 1  (this conclusion is obtained by passage to the limit 
6 ---* +0 or 6 ~ +cx~ in the cases r + ~e > - 1  and v + ~e < - 1 ,  respectively). Fourth, 

A(O~X, Y) = - A ( X ,  O~Y). (4.7) 

Formula (4.7) is established in [7] (see also [8, w 7.4]); it is obtained by "transferring" the derivative 01 = O/Oyl 
after transformation to a two-dimensional integral [cf. with (2.8)]. 

We find asymptotic relations for the fields u and U and V near the crack tip. Let (r, T) be the polar 
coordinate, where r = Ixl and ~o E ( -~r , r ) .  Since we use the Leonov-Panasyuk-Dugdale model, the stress- 
intensity coefficients are equal to zero, and we have 

It(X) = A(x) Jr- r 3/2 {/Qo3"l(~o) -{- k203"2(~)} + O(r2). (4.8) 

In this case,  

u(x) = a~A(0)+ (3/2)r 1/2 {kl (I)1'1(~O) -~- k2(I)1'2(~9)} -4- o ( r l ) ;  (4.9) 
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V(x) = -A(0) + (l12)r 3/2 {kl(I)Z'l(qo) + k2(I)3'2(q~)} + O(r2). (4.10) 

Here A is a linear function, kl and k2 are coefficients at the minor singularities of the solution, and (I) rn,i are 
vectors with following polar components 

{ ' } 1 (m + 2) ~o + (2~  - m) cos g (2 - m) ~ , ~r'~(~o) = ( 2 , 0 - ~ / ~ ( 4 . m )  -~ (m - 2) cos g 

~l(m+2) ,p  - (2~e+m)  sin l (2 -- m) ~o}; (2r)-l /2(4pm) -1 { ( - m  + 2) sin ~ , 1 ( ~ )  

{ 1(2 r n ) }  1 ( m + 2 ) ~ -  (2~e- m) sin ~ r = (2r)-I/2(4/~m)-I (m + 2) sin ~ - ~ , 

1 (m + 2) ~ - (2~  + m) cos g (2 - m) ~, r = (2r)-l/2(4/zm) -1 (m + 2) cos ~ 

Note that (4.9) and (4.10) are obtained from (4.8) by simple differentiation. The second term in (4.9) is the 
same as that for a crack with completely free sides, i.e., 3k1/2 and 3k2/2 are the intensity-coefficients for 
the stres::es generated by the displacement field U. Note that the model considered belongs to the theory 
of opening-mode cracks, in which k2 = 0, but the presence of the second term in braces does not lead to 
additional difficulties, and, for generality (imaginary), we leave k2. 

5. H i g h e r - O r d e r  Invar ian t  Integrals .  We calculate the integral JI(U; F), for which, by virtue of 
singularity of the stresses ao(U), the crack tip requires separate treatment. The result is known (see [3, 4] 
etc.): the integral JI(U; ") calculated along the incomplete circle So = {x : r  = 6, ~o E ( - r ,  r)} is equal to 

[(23 - )2 ( 3 ) 2 ]  9 l+~e (k2+k2)"  (5.1) 1 -t- ~e kl + k2 = 
4 #  16 /z 

We seek integrals along the semicircles 5'+ = {x :p  = 6, 4-0 E (0, 7r)}; for definiteness, we consider the 
upper semicircle. According to (2.4), (3.6), and (4.2), we have 

-2Ja(U; S+) = 2II(U; S+) = A(OIU, U) = A(O2w + 02R2,01w + OaR 1 + 01R 2) + O(6), 6 ~ 0. (5.2) 

Owing to the second property of the form A, the residue 0(6) may not be written. Determining the orders 
of homogeneities for the vector functions on the right side of (5.2) and using the third property, we eliminate 
"superfluous" terms, and, by means of (4.6) and (4.7), we obtain 

-2J l (V;  S+) = A(O2w, OIR 2) - A(OlW, O~R 2) = -2A(Olw, O2R2). (5.3) 

Since R 2 is a quadratic polynomial, taking into account (3.8), we have 

A(Olw, O2R 2) = -qO~R2(-l ,  +0). (5.4) 

Thus, replacing integration along F by integration along the arcs S:t: and So, and by the segments of the crack 
sides that connect the ends of these arcs [on these sections, the integral JI(U;-) vanishes], according to (5.1), 
(5.3), and (5.4), we have 

9~rg(k~ + k~) - qR;  (5.5) J~(U; r )  = 

n = O~R~(-l ,  +0) - O ~ R ~ ( - l , - 0 )  (5.6) 

The contribution of the crack tip to the remaining three integrals considered here is zero (because the 
corresponding integrands remain limited for r ~ 0). The formulas 

JI(V; F) = -21Nq 2 +/2qR; 

Jr(U; F) = Nq 2 - lqR; 

Jr(V; F) = 312Nq 2 - 13 qR 

(5.7) 

(5.8) 

(5.9) 
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are valid. We give manipulations that lead to these formulas. Proceeding as previously and invoking (4.4) and 
(4.5), for the case Jl (V; F), we obtain the following chain of equalities: 

-2J I (V;  S+) = A(-lO2xw + 01T 1, -101w + T o + T 1) + 0(6) 

= -IA(O~w, T 1) - IA(O1T 1 , 01w) = 21A(Olw, 01T 1) 

= 2lqO, Tg(- l ,  +0) = -212qO~I~(-l, +0) + 21Uq 2. 

We calculate two other integrals. Note that, by virtue of (3.5) ~nd (4.3), we have D(OOlw(y) = Nqe 2. 
Next, taking into account (3.8) and (4.3), and also (4.2) or (4.5), we have 

-2Jr (U;  S+ ) = A (-102w - tOUR 2 + D(t) Oa w + O, R 2, O,w + O, R'  + O, R 2) + 0(6) 

= -IA(O2w, OiR 2) - la(O2R2,O,w)+ A (D(t)OlW, O,w) 

= 2lA(Olw, O~R 2) - Nqm(Olw, e 2) = 21qO2R2(-l, + 0 ) -  Yq  2, 

-2J r (V;  5;+) = A (1202w - lO, T '  - lD(t)O,w + T ~, -lOaw + T O + T ' )  + 0(6) 

= 12A(O2w, T 1) + 12A(O1T 1, 01w) + 12NqA(e 2, 01w) 

-= -212A(Olw, OxT 1) - 12Nq 2 = 21SO2R2(-l, +0) - 312 Nq 2. 

Here we repeatedly used the properties of formula (3.6) indicated in Sec. 4. It remains to repeat the 
transformations for the lower semicircle S_ and perform the usual replacement of the path of integration. 

6. D e t e r m i n i n g  Charac ter i s t ics  of the  Crack Mouth .  Using (5.7)-(5.9), we obtain the following 
quadratic equation for the length: 

12jr(U; F) + 21Ji(V; F) + Jr(V; r) -- o. (6.1) 

After determining l from (6.1), we can express the intensity of the cohesion forces by, for example, the equality 

q = 1-'{ N-'[J,(V; F) + IJ,(V; (6.2) 

Now formulas (2.10) and (6.2) yield the opening u2(-l ,  +O)-u2(- l ,  -0 )  of the mouth of the crack. In addition, 
it is easy to find the work (2.12) of the cohesion forces. Note that, according to (4.3), we have 

1 
Jr(u; F) + IJl(u; F) = ~ f {u. a ( " ) (D(0u) -  D(Ou �9 a(")(u)}ds, (6.3) 

F 

i.e., the sum (6.3) is the invariant integral (2.2) [or (2.5)] calculated in the y coordinates, related to the end of 
the crack mouth (it is not possible to avoid determining l). A combination similar to (6.3) also enters (6.2). 

Using one of the equalities (5.7)-(5.9), one can find the difference (5.6) and then, by means of (5.5), the 
sum of the squares of the coefficients ki from (4.8). However, we do not know the physical meaning of these 
quantities as characteristics of the crack mouth. Equally, the aforesaid is true for the coefficients of minor 
terms in series (4.8) and for the jumps of the polynomials R 3, R 4, . . .  in the Taylor formula (3.4) - -  they are 
all sought by iteration of the derivatives 01 = 01/0xl and D = x �9 V. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01069). 
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